Sabtu, 23 April 2022



LPF +20 dB/dec

1. Tujuan (kembali)

 

a.     - Mengetahui pengertian, prinsip kerja, dan karakteristik Low Pass Filter (LPF).

b.     - Dapat merangkai dan menganalisa rangkaian Low Pass Filter (LPF) dengan benar.

c.     - Dapat membuat kesimpulan hasil praktikum dan menganalisa Low Pass Filter (LPF).

 



Komponen (kembali)

Bahan

1)Resistor

Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R). 

 

Cara menghitung nilai resistor:

Tabel warna

 

Contoh :

Gelang ke 1 : Coklat = 1

Gelang ke 2 : Hitam = 0

Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105

Gelang ke 4 : Perak  = Toleransi 10%

Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

 

Spesifikasi

2.)Kapasitor

 

Kapasitor adalah alat yang dapat menyimpan enrgi dalam medan listrik dengan cara menumpulkan ketidakseimbangan internal dari muatan listrik. Kapasitor memiliki satuan yaitu Farad yang di ambil dari nama Michael Faraday.

3)Op Amp - LM741

Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

 

Konfigurasi PIN LM741

 

Spesifikasi:

 

     4. Osiloskop




        Osiloskop dapat digunakan untuk mengukur frekuensi sinyal yang dapat berosilasi. Osilasi juga dapat mengukur tegangan listrik serta relasinya terhadap waktu. Membedakan arus AC dan juga arus DC dan sebuah komponen elektronika. Mengecek sinyal dalam sebuah rangkaian elektronik.

Generator Daya

1)Power Suply

Berfungsi sebagai sumber daya bagi sensor ataupun rangkaian. Spesifikasi :

 

Input voltage: 5V-12V
Output voltage: 5V
Output Current: MAX 3A
Output power:15W
conversion efficiency: 96%

 

Dasar Teori (kembali)

 

Adapun rangkaian LPF -20dB/dec adalah seperti pada gambar 219. Dari rangkaian terlihat bahwa sinyal input diparalelkan dengan kapasitor C sehingga sinyal input yang berfrekuensi dibawah frekuensi cut-off akan dilewatkan dan sebaliknya diatas frekuensi cut-off akan digroundkan. Apabila sinyal yang lewat di kapasitor semakin besar frekuensinya maka kapasitansi kapasitor semakin kecil dan sesuai dengan rumus kapasitor terhadap frekuensi seperti berikut.

 

 

 

 

Rangkaian gambar 219 pada dasarnya adalah rangkaian amplifier karena memakai feedback negatif tetapi rangkaian filter ACL –nya sama dengan satu ( ACL  » 1, butterworth filter). Dengan tegangan input Vi maka tegangan di titik A adalah:

 

 

Dimana

 

 

Sehingga

 

 

Misalkan memakai op-amp ideal maka Ed=0 sehingga Vo = VA Jadi

Pada saat w = wc maka

 

sehingga

 

 

atau

 

 

Jadi, untuk membuat grafik ACL vs w, lakukan substitusi rumus wc pada rumus ACL menjadi seperti berikut;

 

Berikut, variasi nilai w terhadap nilai wc yang ditunjukkan pada tabel 3. Adapun sket hasil tabel 1 adalah hampir menyamai hasil bode plot simulasi pada gambar 220.

 

Prinsip Kerja (kembali)

- Pilih wC atau fc

- Pilih R = (10kΩ s/d 100kΩ)

 - Hitung

 

 - Pilih Rf=R , untuk memperkecil efek bias current

 

Tabel 3 Besarnya ACL terhadap nilai w pada LPF -20 dB/dec

 


5. Rangkaian (kembali)

 

 

 

 

Video Simulasi (kembali)

 

 

 

File Download (kembali)  

Video disini

Rangkaian disini

Data sheet Op Amp disini

Data sheet Sensor LDR disini 

 

Jumat, 22 April 2022

 
 

  • Mempelajari rangkaian aplikasi
  • Mempelajari simulasi rangkaian aplikasi
  • Mempelajari prinsip kerja rangkaian aplikasi
  • 2. Alat dan Bahan[kembali]

    A. Alat

    - Baterai


         Baterai digunakan pada rangkaian ini berfungsi sebagai sumber energi listrik untuk menjalankan rangkaian.

     - DC Motor


     

        DC motor digunakan pada rangkaian ini untuk mengetahui getaran yang terjadi. 

    -Sound Sensor

        Sound sensor adalah sensor yang berfungsi mendeteksi suara.

    Sound Sensor

    -REED Magnetic sensor

    Reed sensor merupakan sensor elektrik yang dioperasikan dengan memanfaatkan medan magnet sebagai pengubah kondisinya. Atau secara ringkas disebut sensor magnet karena akan aktif jika terkena lempengan atau medan magnet. 


    Sensor Infrared
    Fungsi : Untuk mendeteksi adanya benda atau orang ketika cahaya infrared terhalangi oleh benda atau orang
    Spesifikasi : IR1 IR OBSTACLE SENSOR

    B. Bahan

    - Transistor 




      - LED


    A. Spesifikasi :
     
    * Superior weather resistance
    * 5mm Round Standard Directivity
    * UV Resistant Eproxy
    * Forward Current (IF): 30mA
    * Forward Voltage (VF): 1.8V to 2.4V
    * Reverse Voltage: 5V
    * Operating Temperature: -30℃ to +85℃
    * Storage Temperature: -40℃ to +100℃
    * Luminous Intensity: 20mcd 
     
    B. Konfigurasi Pin :
     
    * Pin 1 : Positive terminal of LED
    * Pin 2 : Negative terminal of LED
     
     - Resistor 220 ohm


    Spesifikasi :

    Resistance (Ohms)          : 220 V

    Power (Watts)                     : 0,25 W, ¼ W

    Tolerance                             : ± 5%

    Packaging                           : Bulk

    Composition                       : Carbon Film

    Temperature Coefficient : 350ppm/°C

    Lead Free Status               : Lead Free

    RoHS Status                        : RoHs Complient

     
    - Relay


     A. Spesifikasi :

    • Trigger Voltage (Voltage across coil) : 5V DC
    • Trigger Current (Nominal current) : 70mA
    • Maximum AC load current: 10A @ 250/125V AC
    • Maximum DC load current: 10A @ 30/28V DC
    • Compact 5-pin configuration with plastic moulding
    • Operating time: 10msec Release time: 5msec
    • Maximum switching: 300 operating/minute (mechanically)
     B. Konfigurasi Pin :
     

    Nomor PIN

    Nama Pin

    Deskripsi

    1

    Coil End 1

    Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground

    2

    Coil End 2

    Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground

    3

    Common (COM)

    Common terhubung ke salah satu Ujung Beban yang akan dikontrol

    4

    Normally Close (NC)

    Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu

    5

    Normally Open (NO)

    Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu

     




     
  • Resistor
  • Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.

    Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.

    Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.

    Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.

    Simbol dari resistor merupakan sebagai berikut :


    Cara Menghitung Nilai Resistor

    Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.

     - Berdasarkan Kode Warna

    Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

    Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

    Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :


    4 Gelang Warna


    Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
    Masukkan angka langsung dari kode warna Gelang ke-2
    Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
    Merupakan Toleransi dari nilai Resistor tersebut

    Contoh :

    Gelang ke 1 : Coklat = 1
    Gelang ke 2 : Hitam = 0
    Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
    Gelang ke 4 : Perak = Toleransi 10%
    Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

     5 Gelang Warna



    Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
    Masukkan angka langsung dari kode warna Gelang ke-2
    Masukkan angka langsung dari kode warna Gelang ke-3
    Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
    Merupakan Toleransi dari nilai Resistor tersebut

    Contoh :

    Gelang ke 1 : Coklat = 1
    Gelang ke 2 : Hitam = 0
    Gelang ke 3 : Hijau = 5
    Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
    Gelang ke 5 : Perak = Toleransi 10%
    Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

     

    Contoh-contoh perhitungan lainnya :

    Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
    Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

    Cara menghitung Toleransi :
    2.200 Ohm dengan Toleransi 5% =
    2200 – 5% = 2.090
    2200 + 5% = 2.310
    ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm

    Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :

    HI CO ME O KU JAU BI UNG A PU
    (HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

      - Berdasarkan Kode Angka

    Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)


    Contoh :

    Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;

    Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :

    Masukkan Angka ke-1 langsung = 4
    Masukkan Angka ke-2 langsung = 7
    Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
    Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

     

    Contoh-contoh perhitungan lainnya :

    222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm

    103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm

    334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

     

    Ada juga yang memakai kode angka seperti dibawah ini :
    (Tulisan R menandakan letaknya koma decimal)
    4R7 = 4,7 Ohm
    0R22 = 0,22 Ohm

    Keterangan :

    Ohm = Ω
    Kilo Ohm = KΩ
    Mega Ohm = MΩ
    1.000 Ohm = 1 kilo Ohm (1 KΩ )
    1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
    1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)

     

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :

     


    Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan


    Ground

    Ground atau pertanahan adalah bagian dari Peralatan Listrik rumah. Namun kebanyakan dari masyatrakat Indonesia sudah terbiasa menyebut pertanahan atau gruonding ini dengan kata arde.
    Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :

     

    •   Power Supply
     

        Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :

    • Transistor N-Channel JFET

    Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis Kanal-N ini adalah Elektron.

    Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).

    Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut. Semakin Negatifnya VG,  semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).

    Junction Field Effect Transistor

     
    A. Prosedur Percobaan
     
    • Siapkan alat dan bahan ( sensor,  resistor, transistor, relay, buzzer ground, power supply, logicstate, led, baterai, voltmeter)
    • letakkan alat dan bahan sesuai keinginan
    • Sambung alat dan bahan 
    • Jalankan rangkaian
    B. Rangkaian Simulasi
     
    Foto Rangkaian

     


     



     Prinsip Kerja

     Dimulai dari sensor infrared, apabila mobil lewat dan sensor infrared mendeteksi keberadaan dari mobil tersebut, maka logicstate berlogika 1, sehingga adanya arus yang mengalir dari power supply menuju ke Vcc, kemudian dikeluarkan berupa tegangan melalui kaki Vout, tegangan tersebut diumpankan ke R5, kemudian menuju ke Op-Amp di mana di sini Op-Amp bertindak sebagai non inverting, di mana terjadi penguatan sebanyak 2x dengan dengan Vout-nya dihitung dengan rumus V0 = (Rf/Rin +1) x Vin kemudian menuju R16 kemudian menuju ke base dengan tegangan yang cukup pada base sehingga transistor aktif dengan transistor aktif maka ada arus yang mengalir dari power supply menuju relay menuju kolektor menuju emitor terus ke ground ,jenis dari biasnya yaitu fixed bias dengan adanya arus tersebut maka nilai menjadi aktif dengan switch-nya berpindah ke kiri sehingga rangkaian loop menjadi tertutup dengan rangkaian loop tertutup maka arus dapat mengalir yang mengakibatkan pintu garasi terbuka.

    Pada saat pintu dari rumah ke garasi dibuka maka sensor magnetik akan berlogika 1 sehingga ada arus dari power supply menuju ke Vcc, dikeluarkan berupa Vout kemudian diumpankan ke R menuju ke Op-Amp, di mana Op-Amp di sini bertindak sebagai non inverting amplifier terjadi penguatan dua kali tegangan tersebut menuju ke R23, kemudian menuju ke kaki base, karena tegangan pada kaki base telah cukup, maka ada arus dari power supply menuju relay terus menuju ke kolektor menuju ke emitor menuju ke ground, jenis transistornya adalah Emitter stabilished bias. Maka adanya arus tersebut menandakan bahwa relay aktif sehingga switchnya bergeser ke arah kiri yang mengakibatkan rangkaian loop pada relay tertutup, yang mengakibatkan lampu garasi hidup.

         Pada saat mobil akan keluar garasi, maka sensor sound akan berlogika 1, sehingga ada arus dari power supply menuju Vcc kemudian dikeluarkan berupa Vout kemudian diumpankan ke Op-Amp. Di mana Om-Amp di sini bertindak sebagai voltage follower terjadi penguatan sebanyak 1 kali sehingga Vin = Vout dengan rumus Av = V0/V1. Kemudian diumpankan lagi ke sebuah resistor kemudian menuju ke kaki base di mana tegangan pada kaki base telah cukup, sehingga transistor menjadi aktif, jenisnya yaitu fixed bias. Dengan aktifnya transistor maka ada arus dari power supply menuju relay menuju kolektor menuju emitor terus ke ground dengan relay aktif maka switch bergeser ke arah kiri sehingga rangkaian loop pada relay tertutup sehingga ada arus yang mengalir yang mengakibatkan pintu garasi terbuka dan lampu menyala.

     
    5. Video[kembali]

     





    Link Download[kembali]

    Download Video

    Download File Rangkaian

    Download Datasheet  

    Download HTML

    Download LIBRARY


    MODUL 4

      [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI     1. Pendahuluan     2. Tujuan     3. Alat dan Bahan     4. Dasar Teori     5. Perc...